

SSC8L60PN6

N-Channel Enhancement Mode MOSFET

> Features

V _{DS}	V _{GS}	R _{DS(ON)} Typ.	ID
COV/	1 201/	1.6mΩ@10V	1604
60V	±20V	2.4mΩ@4.5V	160A

Description

This device is N-Channel enhancement MOSFET.

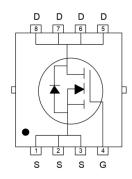
Uses SGT technology and design to provide excellent

RDSON with low gate charge. This device is suitable
for use in DC-DC conversion, power switch and
charging circuit.

100% UIS + ΔVDS + Rg Tested!

Applications

- DC/DC Conversion
- Power Supplies
- Motor Drive Control
- Synchronous Rectification


> Ordering Information

Device	Package	Shipping	
SSC8L60PN6	PDFN5X6-8L	5000/Reel	

Pin Configuration

PDFN5X6-8L (Top View)

Pin Configuration

(XXYY: Internal Traceability Code)

➤ Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit		
V _{DSS}	Drain-to-Source Voltage		60	V	
V _{GSS}	Gate-to-Source Volta	Gate-to-Source Voltage		V	
	Continuous Dunin Commant d	T _C =25℃	160	Δ.	
l _D	Continuous Drain Current d	T _C =100℃	85	A	
	Outliness Paris Commits	T _A =25℃	43	Δ.	
IDSM	I _{DSM} Continuous Drain Current ^a	T _A =70°C	31	A	
Ірм	Pulsed Drain Curren	Pulsed Drain Current b			
5		Tc=25℃	83	10/	
P _D	Power Dissipation ^c	bltage $T_{C}=25^{\circ}C$ $T_{C}=100^{\circ}C$ $T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$ Tent b $T_{C}=100^{\circ}C$ $T_{C}=100^{\circ}C$ $T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$ $T_{A}=70^{\circ}C$ al H Single Pulse $T_{C}=100^{\circ}C$ $T_{C}=100^{\circ$	33	W	
	David Divide the C	Continuous Drain Current a $T_A=70^{\circ}\text{C}$ Pulsed Drain Current b $T_C=25^{\circ}\text{C}$ Power Dissipation c $T_C=100^{\circ}\text{C}$ Power Dissipation a $T_A=25^{\circ}\text{C}$	5.9	10/	
P _{DSM}	Power Dissipation ^a	T _A =70°C	3.8	W	
las	Avalanche Current ^b L=0.5mH Single Pulse		40	Α	
Eas	Avalanche Energy ^b L=0.5mH Single Pulse		400	mJ	
TJ	Operation junction temperature		-55~150	°C	
Тѕтс	Storage temperature ra	ange	-55~150	$^{\circ}\!\mathbb{C}$	

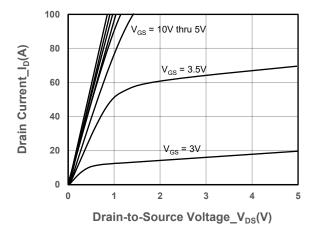
➤ Thermal Resistance Ratings (T_A=25°C unless otherwise noted)

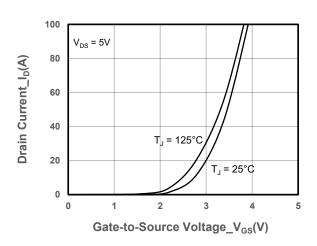
Symbol	Parameter	Ratings	Unit
Reja	Junction-to-Ambient Thermal Resistance a	21	°C/W
R _{θJC}	Junction-to-Case Thermal Resistance	1.5	C/VV

Note:

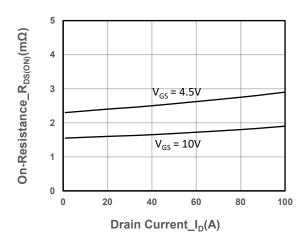
- a. The value of R_{θJA} is measured with the device mounted on 1 in² FR-4 board with 2oz.copper, in a still air environment with T_A=25°C. The value in any given application depends on the user is specific board design. The power dissipation is based on the t≤10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.
- d. The maximum current rating is package limited.

SSC-V1.2 www.sscsemi.com Analog Future

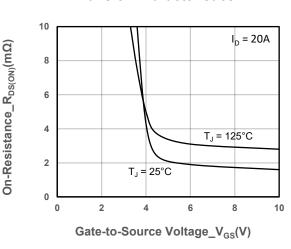


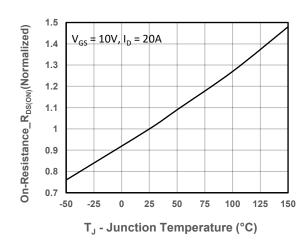

\succ Electrical Characteristics (T_A=25°C unless otherwise noted)

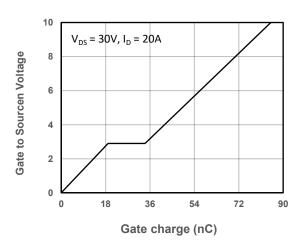
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D = 250μA	60			V
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250uA$	1.0	1.5	2.5	V
Desir Course On Besistense	R _{DS(on)}	V _{GS} = 10V, I _D = 30A		1.6	2.2	0
Drain-Source On-Resistance		V _{GS} = 4.5V, I _D = 20A	2.4 3.2		3.2	mΩ
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 60V, V _{GS} = 0V			1	μΑ
Gate-Source Leak Current	Igss	V _{GS} = ±20V, V _{DS} = 0V			±100	nA
Transconductance	G _{FS}	V _{DS} = 5V, I _D = 20A		37		S
Forward Voltage	V _{SD}	V _{GS} = 0V, I _S = 20A		0.8	1.3	V
Gate Resistance	R _G	V _{DS} = 0V, f = 1MHz		2.5		Ω
Input Capacitance	Ciss	V 00V V 0V		5029		
Output Capacitance	Coss	$V_{DS} = 30V, V_{GS} = 0V,$		825		pF
Reverse Transfer Capacitance	Crss	f = 1MHz		56		
Total Gate Charge	Q _G	101/1/ 001/		85		
Gate to Source Charge	Q _G s	$V_{GS} = 10V, V_{DS} = 30V,$		19		nC
Gate to Drain Charge	Q _{GD}	- I _D = 20A		15		
Turn-on Delay Time	$T_{D(ON)}$			19		
Rise Time	Tr	$V_{GS} = 10V, R_L = 2.5\Omega$		31		
Turn-off Delay Time	T _{D(OFF)}	V_{DS} = 30V, R_{G} = 3 Ω		63		ns
Fall Time	T _f			23		
Diode Recovery Time	Trr	I _F =20A, di/dt=500A/us		34		ns
Diode Recovery Charge	Q _{rr}	I _F =20A, di/dt=500A/us		70		nC



> Typical Performance Characteristics (T_A=25℃ unless otherwise noted)

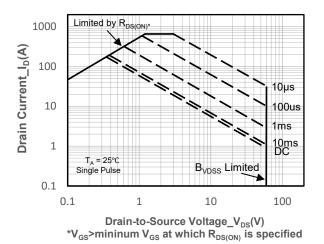



Output Characteristics


Transfer Characteristics

On-Resistance vs. Drain Current and Gate Voltage

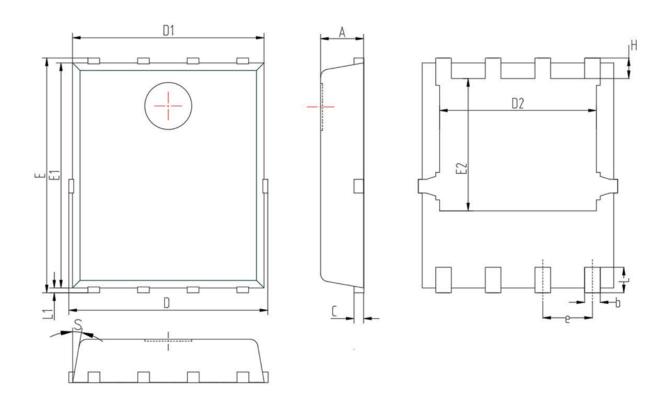
On-Resistance vs. Gate-to-Source Voltage



On-Resistance vs. Junction Temperature

Gate-Source Voltage vs. Gate charge

4/7



Safe Operating Area vs. Junction-to-Ambient

Package Information

Cumbal	MILL IMETER			
Symbol	Min	Nom	Max	
А	0.90	1.05	1.20	
b	0.25	0.30	0.51	
С	0.15	0.25	0.35	
D	4.80	5.10	5.40	
D1	4.80	5.00	5.20	
D2	3.70	4.00	4.30	
E	5.80	6.15	6.50	
E1	5.50	5.75	5.95	
E2	3.30	3.45	3.67	
е	1.27BSC			
Н	0.40	0.60	0.93	
L	0.45	0.65	0.85	
L1	0.00	0.10	0.25	
S	0°		12°	

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.