

SSC8148GS1

N-Channel Enhanced MOSFET

> Features

VDS	VGS	RDSON Typ.	ID	
45)/	1301/	7mΩ@10V	624	
45V	±20V	14mΩ@4V5	63A	

Description

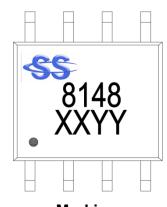
This device uses advanced trench
Technology to provide excellent
RDSON and low gate charge. This
device is suitable for use as a load
switch or in PWM applications.


Applications

- Load Switch
- Portable Devices
- DCDC conversion
- Power supplies
- Motor Drive Control
- Synchronous rectification

Ordering Information

Device	Package	Shipping
SSC8148GS1	SOP8	4000/Reel


Pin configuration

Top View

SOP8

Marking

➤ Absolute Maximum Ratings(TA = 25°C unless otherwise noted)

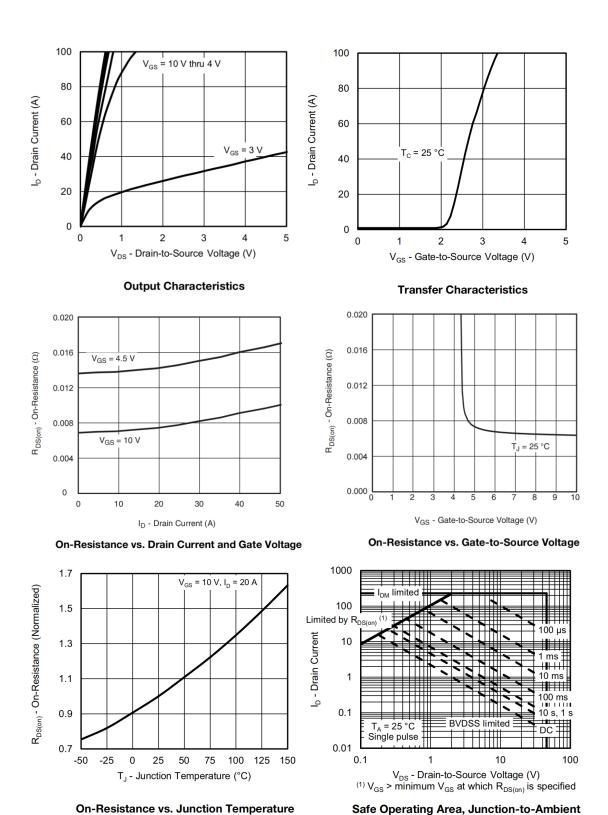
Symbol	Parameter		Ratings	Unit	
V _{DSS}	Drain-to-Source Voltage		45	V	
V _{GSS}	Gate-to-Source Voltage		±20	V	
	Continuous Drain Current ^d	T _C = 25°C	63		
l _D		T _C = 100°C	34	Α	
	Continuous Drain Current ^a	T _A = 25°C	20		
IDSM		T _A = 70°C	15	A	
I _{DM}	Pulsed Drain Current ^b		252	Α	
Б	Power Dissipation ^c	T _C = 25°C	45	W	
P _D		T _C = 100°C	18		
P _{DSM}	Power Dissipation ^a	T _A = 25°C	4.8	W	
		T _A = 70°C	3.1		
I _{AS}	Avalanche Current ^b L=0.5mH Single Pulse		26	Α	
Eas	Avalanche Energy ^b L=0.5mH Single Pulse		169	mJ	
TJ	Operation junction temperature		-55~150	0.0	
T _{STG}	Storage temperature range		-55~150	°C	

➤ Thermal Resistance Ratings(TA = 25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit
Reja	Junction-to-Ambient Thermal Resistance ^a	26	°C 001
Rejc	Junction-to-Case Thermal Resistance	2.8	°C/W

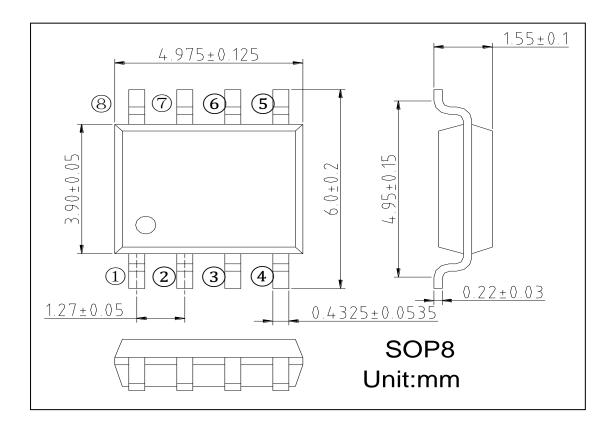
Note:

- a. The value of $R_{\theta JA}$ is measured with the device mounted on 1 in FR-4 board with 2oz.copper, in a still air environment with $T_A = 25^{\circ}\text{C}$. The value in any given application depends on the user is specific board design. The power dissipation is based on the $t \leq 10\text{s}$ thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on $T_{J(MAX)}$ = 150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.
- d. The maximum current rating is package limited.



➤ Electronics Characteristics(TA = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250uA	45			V
$V_{GS\ (th)}$	Gate Threshold Voltage	V _D S = V _G S, I _D = 250uA	1.2	2	3	V
R _{DS} (on)	Drain-Source On-	V _{GS} = 10V, I _D = 20A		7	9.5	mΩ
	Resistance	V _{GS} = 4.5V, I _D = 15A		14	18.5	
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 40V, V _{GS} = 0V			1	μA
I _{GSS}	Gate-Source leak	V _{GS} = ±20V, V _{DS} = 0V			±100	nA
G _{FS}	Transconductance	Vps = 5V, Ip = 20A		27		S
V _{SD}	Forward Voltage	V _{GS} = 0V, Is = 10A		0.8	1.4	V
Rg	Gate Resistance	V _{DS} = 0V, f = 1MHz		1		Ω
Ciss	Input Capacitance			2250		
Coss	Output Capacitance	V _{DS} = 20V, V _{GS} = 0V, f = 1MHz		190		pF
Crss	Reverse Capacitance	1 - 110112		160		
T _{D(ON)}	Turn-on delay time			9.5		
Tr	Rise time	V _{GS} = 10V, RL = 1Ω		28		
$T_{D(OFF)}$	Turn-off delay time	V _{DS} = 20V, RG = 3Ω		27		ns -
Tf	Fall time			9.5		
Q_G	Total Gate Charge	101/11 001/		42		
Q _G s	Gate Source Charge	V _{GS} = 10V, V _{DS} = 20V		9.5		nC
Q _{GD}	Gate Drain Charge	ID = 20A		9		
Trr	Diode Recovery Time	IF = 20A, di/dt = 200A/us		19		ns
Qrr	Diode Recovery Charge	IF = 20A, di/dt = 200A/us		24		nC



> Typical Characteristics(T_A = 25°C unless otherwise noted)

Package Information

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.